

Home Search Collections Journals About Contact us My IOPscience

Structure of $\text{GeO}_2\text{-}\text{P}_2\text{O}_5$ glasses studied by x-ray and neutron diffraction

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys.: Condens. Matter 18 1847 (http://iopscience.iop.org/0953-8984/18/6/002)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 28/05/2010 at 08:56

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 18 (2006) 1847-1860

Structure of GeO₂–P₂O₅ glasses studied by x-ray and neutron diffraction

U Hoppe¹, R K Brow², B C Tischendorf², P Jóvári^{3,4} and A C Hannon⁵

¹ Institut für Physik, Universität Rostock, Rostock D-18051, Germany

² Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409, USA

³ Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg D-22607, Germany

⁴ Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, POB 49, Budapest H-1525, Hungary

⁵ ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK

Received 15 November 2005, in final form 3 January 2006 Published 23 January 2006 Online at stacks.iop.org/JPhysCM/18/1847

Abstract

The structures of three $x \text{GeO}_2$ - $(1 - x)P_2O_5$ glasses, where x = 0.98, 0.88, and 0.81, have been studied by neutron and x-ray diffraction experiments that yield well resolved P-O and Ge-O bond distances. The Ge-O coordination number (N_{GeO}) increased from 4.0 \pm 0.2 to 4.5 \pm 0.2 with the decrease in x from 0.98 to 0.81. The increase in N_{GeO} is consistent with a structural model that assumes that all oxygen form Ge–O–Ge and P–O–Ge linkages between Ge polyhedra and P tetrahedra and that new GeO5 or GeO6 polyhedra are formed with isolated PO₄ units when P₂O₅ is added to GeO₂. The bond valencies in the P–O bonds of the PO₄ tetrahedra are greater than unity and are balanced in P–O–Ge bridges with underbonded Ge–O links in the GeO₅ or GeO₆ polyhedra. Mixed site connections are expected for the GeO₅ (or GeO₆) and PO₄ units in glasses with relatively low (<20 mol%) P₂O₅ content due to the overwhelming fraction of GeO₄ tetrahedra. The structural changes are compared with those reported for alkali germanate glasses. Several features indicate different characteristics for the compositional dependence of N_{GeO} for the GeO_2 -P₂O₅ and alkali germanate glasses. However, the distributions of the first-neighbour Ge-O distances are found to be nearly identical for the GeO2-P2O5 and K2O-GeO2 glasses of equimolar K₂O and P₂O₅ content.

1. Introduction

The compositional dependence of the molar volume and the refractivity of $\text{GeO}_2-\text{P}_2\text{O}_5$ glasses indicates that the average oxygen coordination number (N_{GeO}) of Ge atoms increases with increasing P₂O₅ content [1]. This phenomenon is similar to that found for alkali germanate glasses, where an increase of N_{GeO} was used to explain the anomalous behaviour of several properties [2]. Ge K-edge extended x-ray absorption fine structure (EXAFS) [3, 4] and anomalous x-ray scattering (AXS) [4–6] methods were used to determine Ge–O distances and coordination numbers in GeO₂–P₂O₅ glasses. Experiments on xGeO₂–(1 – x)P₂O₅ glasses, where 0.75 $\leq x \leq 1$, indicate an increase of N_{GeO} from 4.0 to 5.6, and an increase in r_{GeO} distances, from ~0.175 to ~180 nm, with increasing P₂O₅ content. Germanophosphate crystal structures [7, 8] show the existence of sixfold coordinated germanium (^[6]Ge) and so the possibility exists for the formation of a germanophosphate glass network based on PO₄ and GeO₄ tetrahedra and GeO₆ octahedra.

The aim of the present work is to investigate the structure of $\text{GeO}_2-\text{P}_2\text{O}_5$ glasses through the use of neutron and x-ray diffraction experiments of high resolving power. Such experiments are possible at neutron spallation sources and at synchrotrons supplying hard x-rays. The resolving power of the AXS experiments in [4–6] was not sufficient to obtain all details of the separate P–O and Ge–O peaks. The focus of the present experiments is the better resolution of the P–O and Ge–O peaks and the determination of the parameters of the corresponding distances with high accuracy. Precise N_{GeO} values are needed for discussion of the underlying structural processes responsible for the coordination changes.

For the alkali germanate (A₂O–GeO₂) glasses, the absence of non-bridging oxygens (O_{NB}) indicated that the Ge–O coordination numbers must increase in accordance with the amount of the oxygen introduced by A₂O [9]. Thus, all oxygen atoms should occupy bridging positions (O_B). Diffraction experiments of high resolving power performed on alkali germanate glasses [10, 11] confirmed the increase of N_{GeO} with the additions of A₂O. Analysis of the Ge–O peaks in these studies indicated a fraction of Ge–O distances of ~0.188 nm which are typical of ^[6]Ge sites [10, 11].

The addition of P_2O_5 , a network-forming oxide, is expected to have different effects on the germanate network than would the addition of network-modifying alkali oxides. The structure of glassy (v-) P_2O_5 is formed from PO_4 tetrahedra connected with each other through three corners. The fourth and free corner is occupied by a doubly bonded oxygen (O_{DB}) which is needed to complete the countercharge for compensation of the valency of the P atom [12]. When modifying oxides are added to P_2O_5 glass, the phosphate network disintegrates as non-bridging oxygens form [13, 14] and the 'free corners' of the PO₄ units occupied with O_{DB} participate in the coordination of the modifying cations [14, 15]. The network disintegration ends in the formation of isolated PO_4 units which are connected through four corners to modifying cations.

When a network-forming oxide, such as GeO₂, is added to P₂O₅, new bridging oxygens are shared by both polyhedra, and isolated PO₄ units can be formed which are connected through four corners to the new network-forming cations. One consequence is that the mean coordination number of the 'modifying' species increases. Such behaviour is seen for TeO₂–P₂O₅ glasses [16] where TeO₂ is known as a conditional glass former, i.e., the pure component TeO₂ is difficult to obtain in glassy form. The earlier analyses of the structure of GeO₂–P₂O₅ glasses [3–5] indicate an equivalent increase of N_{GeO} . However, more precise N_{GeO} numbers are needed to confirm the predicted effect of the P₂O₅ added to the glassy germanate networks.

2. Experimental details

Three samples from the $GeO_2-P_2O_5$ system were prepared with batch compositions of 95, 85 and 75 mol% GeO_2 . The glasses were prepared from GeO_2 and $NH_4H_2PO_4$. Measured amounts of each starting material were ground together in a mortar and pestle, placed into

alumina crucibles, and then calcined at 800 °C for 1.5 h to remove ammonia and water from the system. The samples were then melted at temperatures between 1250 and 1400 °C for 30 min before being quenched between copper plates. Compositions were analysed by taking the average of five points using energy dispersive spectroscopy (EDS), which revealed some P_2O_5 loss. The samples are free of significant Al₂O₃ contaminations (all less than 1 mol%). The three samples have 98, 88 and 81 mol% GeO₂, and are labelled gep98, gep88 and gep81, respectively. The densities of the glasses were measured using Archimedes' method with kerosene as the immersion liquid. Measurements were performed on four individual samples of each composition, yielding average densities of 3.587 ± 0.005 , 3.577 ± 0.005 and 3.551 ± 0.005 g cm⁻³ for the three glasses, with increasing P₂O₅ content. These values convert to atom number densities of 63.1, 68.7 and 72.0 nm⁻³, respectively.

The neutron diffraction experiments were performed at the GEM diffractometer [17] of the spallation source ISIS of the Rutherford Appleton Laboratory (Chilton, UK). The glassy material was crushed and loaded into vanadium cylinders 5.0 mm in diameter and with wall thickness of only 0.025 mm. The beam size was $12 \times 40 \text{ mm}^2$. The duration of the data collection was 5 h for gep98 and >10 h for gep88 and gep81. A 6 mm vanadium rod was used to obtain the incident energy spectrum which is needed for data normalization in the timeof-flight regime. The diffraction data were corrected using standard procedures for container and background scattering, attenuation, multiple scattering and inelasticity effects [18]. The differential scattering cross-sections, $d\sigma/d\Omega$, collected in detector groups 2 (13°–21°), 3 (24°– 45°), 4 ($50^{\circ}-74^{\circ}$), and 5 ($79^{\circ}-106^{\circ}$) were used to compose the final Faber–Ziman structure factors $S_N(Q)$ [19]. Here Q is the momentum transfer with $Q = (4\pi/\lambda) \sin\theta$; λ is the radiation wavelength and 2θ is the scattering angle. At first, the data of group 5 were normalized to the total scattering cross-section $\sigma/4\pi$. Subsequently, the data of groups 2, 3, 4 were adjusted to those of group 5. After performing a rough Gaussian fitting of the firstneighbour peaks, the normalization was repeated until agreement of the experimental scattering data with model structure factors calculated with parameters of the Gaussian functions was achieved. Figure 1 shows the weighted experimental Q[S(Q) - 1] data and the corresponding model functions.

The x-ray diffraction experiments were performed at the BW5 wiggler beamline at the synchrotron DORIS III of Deutsches Elektronen-Synchrotron (Hamburg). An incident photon energy of 122.5 keV ($\lambda = 0.0101$ nm) was chosen for the experiments. The beam size was 1×4 mm². Exact absorption corrections are difficult because the 2.5 mm diameter of the silica capillaries (with wall thickness of 0.01 mm) containing the glassy powder exceeds the beam width. The scattering angles are small ($2\theta = 28^{\circ}$ for $Q_{\text{max}} = 300 \text{ nm}^{-1}$) and the transmission coefficients are greater than 0.9, and so the absorption is independent of the angle θ . The electronic energy window of the solid-state Ge-detector was chosen to pass the elastic line and the full Compton peak but not fluorescence radiation. The duration of data collection per sample was 8 h. Dead-time corrections were made with a parameter $\tau =$ 1.08 μ s [20] and a fraction of 0.91 of incident photons is polarized horizontally. Corrections were made for background, container scattering, polarization and absorption. Subsequently, scattering intensities were normalized to the structure-independent scattering functions which were obtained from the tabulated atomic elastic scattering factors [21] and atomic Compton scattering data [22]. Empirical corrections were used in the range $Q > \sim 220 \text{ nm}^{-1}$ to make the scattering intensity oscillate around the structure-independent scattering. Deficits in the calculation of the Compton fraction, uncertainties with the chemical compositions, errors in the instrument calibration, instabilities of beam position and fluctuations of monitor efficiencies can cause the deviations. Finally, the Faber–Ziman structure factors, $S_X(Q)$, are calculated [19, 23].

Figure 1. Weighted interference functions of the three samples studied: (a) neutron data and (b) x-ray data. The experimental data (dots) are compared with model functions (lines) which are calculated with the parameters of peaks used for the model T(r) functions shown in figures 2 and 3. Upper functions are shifted for clarity.

3. Results

3.1. Structure factors and correlation functions

The neutron and x-ray structure factors shown in figures 1(a) and (b) are weighted with Q to make visible the oscillations in the high-Q range. The neutron data for $Q > 360 \text{ nm}^{-1}$ are scattered and the corresponding model Q[S(Q) - 1] functions of the samples gep88 and gep81 are very flat in this range. An increase in the data acquisition time would provide limited improvement on the resolution in this region. The x-ray data of gep88 show unphysical differences with the model function at Q of ~280 nm⁻¹.

Since the data of high Q-values are noisy, Fourier transformations (FTs) are performed with damping of S(Q) using Q_{max} of 500 and 318 nm⁻¹ for neutrons and x-rays, respectively. The real-space correlation functions, T(r), are obtained with

$$T(r) = 4\pi r \rho_0 + 2/\pi \int_0^{Q_{\text{max}}} Q[S(Q) - 1] M(Q) \sin(Qr) \, \mathrm{d}Q \tag{1}$$

Figure 2. Correlation functions in the range of the first-neighbour peaks of the $\text{GeO}_2-\text{P}_2\text{O}_5$ glasses (dotted lines): (a) neutron and (b) x-ray data obtained with damping in FT and Q_{max} of 500 and 318 nm⁻¹. The model T(r) functions are given as thick solid lines for which reasonable parameters for the O–O, Ge–P and Ge–Ge peaks are chosen arbitrarily without fits. The model P–O (thin solid lines) and Ge–O (dashed lines) components obtained by peak fitting are shown as separate peaks. Upper functions are shifted for clarity.

where ρ_0 is the number density of atoms and the damping function M(Q) used is $M(Q) = \sin(\pi Q/Q_{\text{max}})/(\pi Q/Q_{\text{max}})$ [24]. The resulting T(r) functions are shown in figure 2. Since the data ranges with high Q-values are very important for resolving the details of the narrow peaks of covalent bonds, the FT procedures are also repeated without damping and with Q_{max} values of 360 and 318 nm⁻¹ for the neutron and x-ray data, respectively. The corresponding T(r) functions without damping are shown in figure 3. The P–O and Ge–O first-neighbour distances are resolved for gep88 and gep81, and are better without damping as shown in figure 3. The fraction of P₂O₅ in gep98 is too small to show significant P–O correlations. The T(r) functions of gep81 plotted in figure 3 (no damping) show clear shoulders at ~0.195 nm which could be interpreted as the contributions from GeO₆ octahedra possessing

Figure 3. Correlation functions in the range of the first-neighbour peaks of the GeO₂–P₂O₅ glasses (dotted lines): (a) neutron and (b) x-ray data obtained without damping in FT and Q_{max} of 360 and 318 nm⁻¹. The model T(r) functions calculated with the peak parameters already used in figure 2 are given as thick solid lines. The model P–O (thin solid lines) and Ge–O (dashed lines) components are also shown separately. Definite O–O distances are marked by arrows and are related to edge lengths of the structural groups indicated in the plot. Upper functions are shifted for clarity.

greater Ge–O distances; however, peaks at this distance are also found for the other two samples. The peaks are due to satellite ripples caused by the termination effects from FTs according to equation (1) and the shoulder of the Ge–O peak of gep81 appears enhanced from the termination effect. Therefore, the P–O and Ge–O peaks shown in figure 2 exhibit more realistic shapes without the FT termination ripples but the damping causes some peak broadening. The position of the Ge–O peak shifts by 0.002 nm to greater distances in the series gep98 < gep88 < gep81. In addition, there is an increasing asymmetry of the peaks for gep88 and gep81, whereas the peak of gep98 is still nearly symmetric. A separate component at ~0.188 nm, which could be directly related to ^[6]Ge sites, is not found in the Ge–O peaks.

Sample label	Atom pair	Peak parameters			Ge–O	Mean Ge-O
		N _{ij}	r _{ij} (nm)	Δr_{ij} (nm)	number	distance (nm)
gep98	P–O	4.00 ^a	0.153 ^a	0.010 ^a		
	Ge–O	3.65	0.1742	0.011	4.00(20)	0.175(1)
		0.35	0.188	0.020 ^a		
	0–0	0.50 ^a	0.252 ^a	0.020 ^a		
		0.50 ^a	0.265 ^a	0.025 ^a		
		5.00 ^a	0.285 ^a	0.025 ^a		
gep88	P–O	4.3(5)	0.153(2)	0.011(2)		
	Ge–O	3.28	0.1747	0.012	4.28(20)	0.178(1)
		1.00	0.188	0.024		
	0–0	1.70 ^a	0.251 ^a	0.019 ^a		
		1.20 ^a	0.265 ^a	0.025 ^a		
		1.60 ^a	0.285 ^a	0.025^{a}		
gep81	P–O	4.14(20)	0.153(1)	0.009(2)		
	Ge–O	3.07	0.1755	0.014	4.51(20)	0.180(1)
		1.44	0.188	0.021		
	0–0	2.40 ^a	0.251 ^a	0.019 ^a		
		2.00 ^a	0.265 ^a	0.025 ^a		
		2.30 ^a	0.286 ^a	0.022 ^a		

Table 1. Parameters resulting from Gaussian fitting of the P–O and Ge–O first-neighbour peaks of the three $GeO_2-P_2O_5$ glasses. Numbers in parentheses give the uncertainty in the last digit. The parameters of the O–O peak are fixed for all samples.

^a These values have been fixed in the fits.

3.2. Gaussian fitting of the first-neighbour peaks

The height of the P–O peak at a bond length of ~ 0.155 nm grows continuously with P₂O₅ content. P–O–P bridges are not expected for the glasses with P_2O_5 content less than about 25 mol% [13, 14]. A variety of lengths of P-O bonds in P-O-Ge bridges can arise from links with the different GeO_4 , GeO_5 and GeO_6 units. Nevertheless, the fit of the P–O peak is successful with a single Gaussian function. In the case of gep98, the parameters of the model P–O peak are fixed because the peak area is very small. The Ge–O peak at \sim 0.175 nm is accompanied by a tail extending to 0.21 nm (figures 2 and 3). Two Gaussian functions are used to fit the Ge-O peak to account for this asymmetry. The parameters of the Gaussian functions are the coordination numbers, N_{ij} , the mean distances, r_{ij} , and the peak widths (full widths at half maximum), Δr_{ij} , for the pairs of atomic species i and j. Gaussian fitting is performed to the $T_N(r)$ and $T_X(r)$ data simultaneously. The effects of termination of the FT integral at Q_{max} are taken into account by convolution of the Gaussian peaks with functions $P_{ii}(r)$ [25, 26]. This procedure simulates the Q-window and damping used in equation (1). In case of xray scattering, different dependences on Q of the weighting factors $w_{ij}(Q)$ cause specific features. For example, flat tails occur on both sides of the Ge-O peaks, extending to 0.13 nm or to 0.24 nm. These effects are reproduced in the model functions by appropriate use of the convolution method mentioned above. Least-squares fits using the Marquardt algorithm [27] are only performed on the T(r) functions obtained with damping (figure 2). Small differences at ~ 0.195 nm exist for the model functions of gep88 and gep81 shown in figure 2(a). The resulting peak parameters are listed in table 1. Subsequently, for the T(r) data obtained without damping (figure 3), model functions are calculated by use of these parameters. Here, good agreement is found with even the termination ripples well reproduced. Only in the case of the x-ray data of gep88 do some differences exist at lengths of ~0.12 nm. These differences may be caused by the unphysical features at ~280 nm⁻¹ observed in the Q[S(Q) - 1] function of gep88 (figure 1(b)).

The total Ge–O coordination numbers and the corresponding mean distances given in table 1 indicate the formation of ^[5]Ge or ^[6]Ge sites as the P_2O_5 content is increased. The P–O coordination number obtained for all samples are four, within the limits of error. The P–O peaks are narrow and well fitted with a single Gaussian function, as was found for the P–O peaks obtained for TeO₂–P₂O₅ glasses [16].

Some peaks of the O–O, Ge–P, and Ge–Ge correlations are added to the model functions using reasonable peak parameters which are empirically optimized. For example, the O-O peak at ~ 0.251 nm, caused by the edges of PO₄ tetrahedra, is needed to correctly simulate the right flank of the Ge–O peak. This O–O contribution increases with increasing P_2O_5 content, whereas that at ~ 0.285 nm decreases. The latter distance is due to the edges of the GeO₄ tetrahedra (see figure 3(a)). As P₂O₅ is added, the height of the peak at 0.285 nm decreases to less than that of the peak at 0.251 nm although the number of Ge atoms is still greater than that of P atoms. This fact is a further indication for a change in the coordination of the GeO₄ units. With increasing P_2O_5 content, additional O–O distances occur at ~0.265 nm. Such lengths can be attributed to the edges of GeO_6 octahedra. In principle, a quantitative analysis of the O–O correlations of the neutron T(r) function could help to determine the fractions of the different GeO_n groups, but the edge lengths of possible GeO_5 polyhedra are not known. Secondly, we do not know the widths of the overlapping O–O correlations of the PO₄ units and the different GeO_n polyhedra. The edge lengths and peak widths of these correlations can change with glass composition. In the x-ray T(r) functions the O–O correlations possess little weight but the Ge-P and Ge-Ge correlations dominate. The P-P peak caused by P-O-P links would appear at ~ 0.295 nm, but indications for such linkages in significant numbers are not found.

4. Discussion

4.1. Compositional dependence of the Ge–O coordination number

The Ge–O coordination numbers for the $x \text{GeO}_2 - (1 - x) P_2 O_5$ glasses obtained in two independent diffraction experiments possess greater accuracy than the N_{GeO} numbers obtained by AXS [4–6]. The continuous change of N_{GeO} , from 4.0 ± 0.2 to 4.3 ± 0.2 and 4.5 ± 0.2 , with decreasing x, is small but significant. These numbers can be compared with the behaviour predicted in section 1, where isolated PO₄ units which are connected through four corners provide additional oxygens to form P–O–Ge bridges to GeO_n units with n > 4. The corresponding structural changes are expressed for GeO₅ units by the relationship [16]

$$PO_{3/2}O + GeO_{4/2} \rightarrow (PO_{4/2})^+ + (GeO_{5/2})^-$$
 (2)

where $O_{1/2}$ represents a bridging oxygen atom (P–O–P, Ge–O–Ge, or Ge–O–P). Some GeO_{4/2} units of v-GeO₂ are converted to Ge units with greater coordination numbers (N_{GeO}) and these new germanate sites are charge-balanced by the formation of isolated PO_{4/2} units from P₂O₅.

Figure 4 shows the dependence of N_{GeO} on composition for the P₂O₅-containing glasses and for Na₂O- and K₂O-containing germanate glasses [10, 11]. The glass compositions are represented by the mole fractions $c(M_zO)$ for the M_aO_b oxides, where z = a/b. From equation (2), the effect of composition on N_{GeO} is described by

$$N_{\rm GeO} = 4 + 0.4c(P_{0,4}O)/[1 - c(P_{0,4}O)].$$
(3)

Equation (3) is represented by the dotted line labelled 'model D' in figure 4, as described in an earlier study of the structures of $x \text{TeO}_2 - (1 - x)P_2O_5$ glasses [16]. The present

Figure 4. Compositional behaviour of the Ge–O coordination numbers of the GeO₂–P₂O₅ glasses studied, of N_{GeO} values obtained by AXS [4, 5] and of N_{GeO} values of alkali germanate glasses with Na₂O [10] and K₂O [11] versus content of the second component. The N_{GeO} numbers are compared with those of some related crystal structures (Ge₅O(PO₄)₆ [7], GeP₂O₇ [8], Na₄Ge₉O₂₀ [30], Na₂Ge₄O₉ [34], Li₂Ge₂O₅ [35], Li₂GeO₃ [36], Al₂Ge₂O₇ [31], ZrGeO₄ [32]). The dashed, dotted and solid lines specify the behaviour of N_{GeO} according to three compositional models (C, D, and E, respectively) originally developed to understand the N_{TeO} behaviour in binary tellurite glasses [16]. The models are described in the text.

 N_{GeO} results match the predicted behaviour very well. The N_{GeO} of two germanophosphate crystal structures [7, 8], where all oxygen atoms are in bridging positions, are found on the corresponding 'model D' line, as well. The AXS results [4–6] follow the 'model D' predictions only roughly. Structural deviations from 'model D' might be due, for example, to some O atoms that have three Ge neighbours (for example as in the rutile form of GeO₂ [29] or in Na₄Ge₉O₂₀ [30]), giving a value of N_{GeO} greater than predicted. In germanate crystals with second oxides such as the conditional glass formers Al₂O₃ or ZrO₂ [31, 32], the Ge atoms form only GeO₄ tetrahedra. Glasses of the GeO₂–TeO₂ system have been studied by EXAFS, where the formation of some GeO₆ octahedra was reported [33].

An increase of N_{GeO} is well known for the alkali germanates. Figure 4 shows the N_{GeO} of four crystal structures. The first of them (Na₄Ge₉O₂₀ [30]) possesses some oxygens with three ^[6]Ge neighbours. The N_{GeO} values of A₂O–GeO₂ glasses obtained by neutron diffraction of high resolving power [10, 11] are comparable to those indicated by the other three crystal structures [34–36]. Up to compositions with $c(A_2O) \sim 0.2$, all oxygens form Ge–O–Ge bridges, as noted in section 1. The structural changes have been summarized by [37]

$$A_2O + GeO_{4/2} \rightarrow 2A^+ + (GeO_{6/2})^{2-}$$
 (4)

and the corresponding increase of N_{GeO} is given by 'model E' with

$$N_{\rm GeO} = 4 + 2c(A_2O)/[1 - c(A_2O)].$$
(5)

The octahedral GeO₆ units result from sp^3d^2 hybridization and figure 5(a) shows a representation of their bonding environment. The N_{GeO} of the alkali germanate glasses follows compositional 'model E' up to modifier additions of ~0.2. With additional modifier, the germanate structure returns to that based on GeO₄ units and the formation of non-bridging oxygens becomes significant. A corresponding maximum limit in N_{GeO} is not indicated for the GeO₂-P₂O₅ glasses studied to date [4, 5, this work] or for the related crystals [7, 8].

Figure 5. Schemes of germanate networks: (a) linkages to a GeO₆ octahedron in an alkali germanate; (b) linkages between P and Ge units in the GeP₂O₇ crystal [8]; (c) linkages between P and Ge units in the Ge₅O(PO₄)₆ crystal [7]; (d) possible linkages between P and Ge units in a structure with 33 mol% P₂O₅. The numbers indicated in the plots are bond lengths given in picometres. Oxygen atoms have been removed for clarity.

The effect of composition on N_{GeO} for the $\text{GeO}_2-\text{P}_2\text{O}_5$ glasses is similar to that found for the compositional dependences of N_{TeO} for $\text{TeO}_2-\text{P}_2\text{O}_5$ glasses [16]. In both cases, the reasons for these changes are attributable to properties of the PO₄ units [13–15]. In contrast, when alkali oxides are added to the germanate and tellurite networks, the N_{GeO} and N_{TeO} values have different compositional dependences, as expressed by 'model E' for the germanates and 'model A' (see [16]) for the tellurites. In 'model A', the addition of A₂O reduces N_{TeO} as TeO₄ units are replaced by TeO₃ units.

For alkali additions to GeO₂, the increase of N_{GeO} avoids formation of O_{NB} by forming suitable anionic O_B sites for more uniform distributions of the negative charge needed to balance nearby A⁺ ions. In tellurite glasses, alkali additions create O_{NB} such as in silicate networks, but the number of O_{NB} is doubled by the TeO₄ \rightarrow TeO₃ transition, which increases the number of suitable O_{NB} sites for more uniform distributions of the negative charge needed to charge balance neighbouring A⁺ ions. In the case of the P₂O₅ additions, the N_{GeO} (or N_{TeO}) increases and the formation of isolated PO_{4/2} tetrahedra (equation (2)) with equivalent linkages through their four corners to GeO_n (or TeO_n) units becomes possible.

4.2. Distributions of the P–O and Ge–O bond lengths

The compositional dependence of N_{GeO} discussed above is a direct result from the experimental data. Equation (2) gives an explanation of this dependence based on the GeO₄ \rightarrow GeO₅ transition. An analogous relationship could be given for the formation of GeO₆ units, but direct knowledge of the preference for either the ^[6]Ge or ^[5]Ge sites is not available. Clarification is also desired for details of the linkages between the different groups. The P and ^[5]Ge (and/or ^[6]Ge) sites are neighbours through P–O–Ge linkages for reasons of charge balance, but each of the P and ^[5]Ge (and/or ^[6]Ge) sites should also have GeO₄ neighbours because the greatest fraction of Ge in these glasses is tetrahedral.

The distributions of bonds in the structures of the $Ge_5O(PO_4)_6$ [7] and GeP_2O_7 [8] crystals show that the PO₄ tetrahedra possess three ^[6]Ge neighbours but also a ^[4]Ge or P neighbour,

Figure 6. Network sections showing the linkages between the PO₄, GeO₆, and GeO₄ groups (a) as arranged in the Ge₅O(PO₄)₆ crystal [7]; (b) as suggested for glasses with P_2O_5 content less than 20 mol%. Arrows indicate the directions of partial shifts of electron charges.

respectively (see figures 5(b) and (c)). The bond lengths in the PO₄ units are different for linkages with octahedra or tetrahedra while the ^[6]Ge form regular octahedra. A structure based on only PO₄ and GeO₅ units (figure 5(d)) is possible (33 mol% P₂O₅), where the P–O bonds of the PO₄ are in equivalent linkages with four ^[5]Ge. GeO₅ polyhedra possess less regular shapes with geometries ranging from square pyramids to trigonal bipyramids; however, uniform environments with equal groups in the neighbouring positions are probably rare for the PO₄ or GeO_n units existing in the structures of the glasses examined here.

The P–O peaks of samples gep88 and gep81 have been approximated with single Gaussian functions. The peak widths are similar to those obtained earlier [28, 38] for either the peaks of the P–O_T or P–O_B bonds. The terminal oxygens (O_T) include the O_{DB} known from the PO_{3/2}O units and the O_{NB} created by breakage of P–O–P bridges using the oxygen of the modifier oxide. The O_{DB} and O_{NB} cannot be differentiated in the PO₄ tetrahedra [14]. The position of the P–O peak at ~0.153 nm (table 1) is similar to the mean bond lengths found for other binary phosphate glasses [28, 38].

The 'isolated' PO₄ tetrahedra in the crystal structure of Ge₅O(PO₄)₆ [7] (figure 5(c)) have different P–O bond lengths in bridges with the ^[6]Ge and ^[4]Ge sites, with $r_{PO} \sim 0.150$ and 0.159 nm, respectively. Observation of split P–O peaks, such as those found for the P–O_T and P–O_B bonds of other binary phosphate glasses [28, 38], is not possible with such distance differences and Q_{max} of only 360 nm⁻¹. But such differences of bond lengths would increase the width of the P–O peak significantly. Due to the change of contrast of the P–O and Ge– O correlations in the x-ray and neutron diffraction data (figures 3(a) and (b)) inappropriate separations of the first-neighbour peaks would become visible but the fits were successful with single and narrow P–O peaks.

The structures of the germanophosphate glasses studied here are expected to differ from that of the Ge₅O(PO₄)₆ crystal [7], where ^[4]Ge–O–^[6]Ge bridges do not exist and, consequently, an optimum exchange of charges with the PO₄ tetrahedra is not possible. In the glasses with greater numbers of GeO₄ units coexisting with the P and ^[5]Ge (and/or ^[6]Ge) neighbours, all the latter sites should possess some GeO₄ neighbours and a GeO₄ unit should form linkages with unlike groups, as well. The balance of bonding forces is accompanied with shifts of charges across the different groups which reduces the differences between the lengths of P–O bonds in the P–O–^[n]Ge linkages with n = 4, 5, 6, as shown in figure 6. According to equation (2), two PO₄ tetrahedra provide the GeO₆ unit with two additional electrons. This consideration implies that the single P–O bonds in the bridges with the ^[6]Ge and ^[4]Ge sites should possess lengths close to those known of P–O_B bonds (~0.160 nm [28, 38]). However, due to the high positive charge at the P⁵⁺ ion, part of the negative charge formally given to the GeO₆ is held closer to the P⁵⁺ (figure 6(b)). The Ge–O bonds of the GeO₆ units appear underbonded and the

Figure 7. Network sections with (a) PO_4 and, (b) K^+ sites inserted into the germanate structures showing the analogous effect of their incorporation in germanate networks here with adjacent GeO₅ and GeO₄ groups. The P₂O₅ and K₂O contents are less than 0.2. Edge-sharing between the PO₄ and GeO₅ units is only shown for simplicity and is not assumed as a dominating feature.

P–O bonds become overbonded irrespective of the kind of neighbouring GeO_n group. Thus, the small width of the P–O peak should not be used as an indication for links with specific ^[n]Ge. The bonds in the GeO₄ unit behave differently; those in competition with the P sites (P–O–^[4]Ge linkages) are elongated whereas those in ^[4]Ge–O–^[6]Ge linkages are shortened.

Despite the differences that exist between the Ge–O coordination change of GeO₂–P₂O₅ and A₂O–GeO₂ glasses, it is worthwhile comparing the Ge–O bond parameters shown in table 1 with the Ge–O parameters reported for K₂O–GeO₂ glasses [11, 39]. An N_{GeO} of ~4.3 and a mean Ge–O distance of 0.178 nm with the first sharp component at 0.175 nm were found for the K₂O–GeO₂ sample of 11 mol% K₂O [11, 39]; virtually identical structural parameters were obtained for gep88 (table 1). An N_{GeO} of ~4.3 (neutron data [11]) or ~4.5 (x-ray data [39]) and a mean distance of 0.180 nm with the first sharp component at 0.1755 nm are reported for the 20 mol% K₂O glass and the same values were obtained for gep81. The first components are more narrow for the K₂O–GeO₂ glasses.

The comparisons of the lengths of the Ge–O bonds and the relationships (2) and (4) indicate that $(PO_{4/2})^+$ groups and K⁺ ions will have similar effects on germanate networks (with K₂O fractions less than 20 mol%). Figure 7 shows how both ions can occupy similar sites; in this example, they balance a GeO₅ and two GeO₄ units. The partial shift of negative charge (discussed above) from the ^[5]Ge site to the O atoms leads to underbonded Ge–O bonds in the GeO₅ unit but overbonded P–O bonds (figure 7(a)). Underbonded Ge–O bonds in the GeO₅ unit of the K₂O–GeO₂ glass (figure 7(b)) are balanced by the K⁺ ions. The negative charge of the GeO₅ unit is located at those oxygen sites which neighbour the K⁺ ions. These two oxygens share the character of an O_B with that of an O_{NB}. This view is overly simple and the exact distribution of charges is more complicated. For example, the third oxygen neighbour of the K⁺ ion shown in figure 7(b) should carry more negative charge than that in a simple ^[4]Ge–O–^[4]Ge bridge. The analogy of K⁺ ions and (PO_{4/2})⁺ groups ends for glasses with K₂O content of ~20 mol% [10], when non-bridging oxygens form and N_{GeO} decreases to four for K₂O–GeO₂ glasses.

5. Conclusions

The mean Ge–O coordination numbers, N_{GeO} , of GeO₂–P₂O₅ glasses increase with P₂O₅ additions in accordance with the assumption that all oxygen atoms are found in Ge–O–Ge

or P–O–Ge bridges for the glasses studied here, with P_2O_5 content up to 19 mol%. New GeO₆ or GeO₅ polyhedra are formed, coexisting with GeO₄ and isolated PO₄ units, as P_2O_5 is added to the GeO₂ glass. The bond valencies in the P–O bonds are greater than unity and are balanced in P–O–Ge bridges with underbonded Ge–O links from GeO₅ or GeO₆ polyhedra. Mixed site environments are expected for the GeO₅ (or GeO₆) and PO₄ units in glasses with lower P_2O_5 content due to the greater fraction of the GeO₄ tetrahedra. Despite the different groups which are connected to the PO₄ tetrahedra, the peaks of P–O distances are narrow. This behaviour implies that all P–O bonds in the linkages P–O–^[n]Ge with n = 4, 5, 6 are nearly identical and overbonded. The distributions of the first-neighbour Ge–O distances are found to be nearly identical for the GeO₂–P₂O₅ glasses and those reported for K₂O–GeO₂ glasses of equimolar K₂O and P₂O₅ content. This is explained by assuming that the electron as the countercharge of a given K⁺ ion is distributed at the adjacent bridging oxygen sites and does not participate in the covalent Ge–O bonds.

Acknowledgments

Financial support of the Deutsche Forschungsgemeinschaft (contract KR 1372/9-1, Rostock University) is gratefully acknowledged, as is the financial support of the National Science Foundation (DMR 0305202, University of Missouri-Rolla).

References

- [1] Takahashi K, Mochida N, Matsui H, Takeuchi S and Gohshi Y 1976 Yogyo-Kyokai-Shi 84 482
- [2] Ivanov A O and Evstropiev K S 1962 Dokl. Akad. Nauk SSSR 145 797
- [3] Shimizugawa Y, Yin C D, Okumo M, Morikawa H, Marumo F, Udagawa Y, Mochida N and Sekiya T 1987 Yogyo-Kyokai-Shi 95 418
- [4] Sugiyama K, Waseda Y and Ashizuka M 1991 Mater. Trans. JIM 32 1030
- [5] Waseda Y 2002 Anomalous x-ray Scattering for Materials Characterization: Atomic-Scale Structure Determination (Springer Tracts in Modern Physics vol 179) (Berlin: Springer) pp 125–8
- [6] Shimizugawa Y, Marumo F, Nukui A and Ohsumi K 1994 J. Non-Cryst. Solids 176 76
- [7] Mayer H and Völlenkle H 1972 *Mh. Chemie* **103** 1560
- [8] Kaiser U and Glaum R 1994 Z. Anorg. Allg. Chemie 610 1755
- [9] Smets B M J and Lommen T P A 1981 J. Non-Cryst. Solids 46 21
- [10] Ueno M, Misawa M and Suzuki K 1983 Physica B 120 347
- [11] Hoppe U, Kranold R, Weber H-J and Hannon A C 1999 J. Non-Cryst. Solids 248 1
- [12] Wright A C, Hulme R A, Grimley D I, Sinclair R N, Martin S W, Rice D L and Galeener F L 1991 J. Non-Cryst. Solids 129 213
- [13] Van Wazer J R 1958 Phosphorus and Its Compounds vol 1 (New York: Interscience) p 717 ff
- [14] Brow R K 2000 J. Non-Cryst. Solids 234/232 1 and references therein
- [15] Hoppe U 1996 J. Non-Cryst. Solids 195 138
- [16] Hoppe U, Gugov I, Bürger H, Jóvári P and Hannon A C 2005 J. Phys.: Condens. Matter 17 2365
- [17] Hannon A C 2005 Nucl. Instrum. Methods A 551 88
- [18] Soper A K and Buchanan P 2004 private communication
- Hannon A C 2004 http://www.isis.rl.ac.uk/disordered/Manuals/gudrun_GEM.htm [19] Faber T E and Ziman J M 1965 *Phil. Mag.* **11** 153
- [20] Poulsen H F, Neuefeind J, Neumann H-B, Schneider J R and Zeidler M D 1995 J. Non-Cryst. Solids 188 63
- [21] Maslen E N, Fox A G and O'Keefe M A 1992 International Tables for Crystallography vol C,
- ed A J C Wilson (Dordrecht: Kluwer) p 476
- [22] Hubbell J H, Veigele Wm J, Briggs E A, Brown R T, Cromer D T and Howerton R J 1975 J. Phys. Chem. Ref. Data 4 471
- [23] Waseda Y 1980 The Structure of Non-Crystalline Materials (New York: McGraw-Hill) p 11
- [24] Lorch E A 1969 J. Phys. C: Solid State Phys. 2 229
- [25] Mozzi R L and Warren B E 1969 J. Appl. Crystallogr. 2 164
- [26] Leadbetter A J and Wright A C 1972 J. Non-Cryst. Solids 7 23

- [27] Marquardt D 1963 SIAM J. Appl. Math. 11 431
- [28] Hoppe U, Kranold R, Stachel D, Barz A and Hannon A C 2000 Z. Naturf. A 55 369
- [29] Baur W H and Khan A A 1971 Acta Crystallogr. B 27 2133
- [30] Ingri N and Lundgren G 1963 Acta Chem. Scand. 17 617
- [31] Agafonov V, Kahn A, Michel D and Perez y Jorba M 1986 J. Solid State Chem. 62 402
- [32] Ennaciri A, Michel D, Perez y Jorba M and Pannetier J 1984 Mater. Res. Bull. 19 793
- [33] Osaka A, Qiu J R, Miura Y and Yao J W 1995 J. Non-Cryst. Solids 191 339
- [34] Fleet M E and Muthupari S 1998 J. Solid State Chem. 140 175
- [35] Völlenkle H and Wittmann A 1968 Mh. Chemie 99 251
- [36] Cruickshank D W J, Kálman A and Stephens J S 1978 Acta Crystallogr. B 34 1333
- [37] Yiannopoulos Y D, Varsamis C P E and Kamitsos E I 2002 Chem. Phys. Lett. 359 246
- [38] Hoppe U, Walter G, Kranold R and Stachel D 2000 J. Non-Cryst. Solids 263/264 29
- [39] Hoppe U, Kranold R, Weber H-J, Neuefeind J and Hannon A C 2000 J. Non-Cryst. Solids 278 99